International Journal of Pharmaceuticals and Health care Research (IJPHR) IJPHR |Vol.11 | Issue 1 | Jan - Mar -2023 www.ijphr.com DOI: https://doi.org/10.61096/ijphr.v11.iss1.2023.101-108 Research ### Dual Benefit Formulation Direct Compression and Solubility Enhancement by Spherical Agglomeration Technique Jyothi S*1, Dr. K. Janakiraman2, Dr. E. Hari Krishna3 Email: ellurujtyothi@gmail.com | Check for updates | Abstract | |--|---| | Published on: 16 Jan 2023 | The present work deals with the spherical crystallization process by Spherical agglomeration method applied to Zaltoprofen, a novel NSAID drug. The object of present study was to prepare and characterize the spherical | | Published by:
DrSriram Publications | agglomeration of water insoluble non-steroidal anti-inflammatory drug. Zaltoprofen spherical agglomerates prepared with sodium alginate, which is hydrophilic polymer by using simple spherical agglomeration technique for enhancing micromeritic properties. The prepared zaltoprofen spherical agglomerates were examined in terms of flow properties, particle size analysis, | | 2023 All rights reserved. Creative Commons | compression and dissolution behaviour. Physical characters of the crystals were studied for the morphology of crystals using scanning electron microscope (SEM), identification of polymorphism done by x-ray powder diffraction (XPRD) and for thermo dynamic properties using differential scanning colorimetry (DSC). The prepared agglomerates were improved the micromeritic properties, packability, wettability, solubility and compaction behaviour in comparison to pure Zaltoprofen drug. | | Attribution 4.0 International License. | Keywords: Direct Compression, Spherical Agglomeration, Zaltoprofen, Spherical Crystallization, bridging liquid, compressibility. | #### **INTRODUCTION** The conventional tableting method involves first making granules and then compressing into tablets by way of direct (granule) tableting, but the need in recent years for process validation, GMP and automation of production processes has focused renewal of attention on the direct tableting, which involves few steps. The direct compression is a modern technique in the tablet manufacturing, many processing steps are limited in direct compression and also wet granulation cannot be used with sensitive drugs. Spherical agglomeration is a modern technique for development of directly compressible drugs where the drug crystals are converted to spherical form to improve flowability, compressibility, packability and to enhance dissolution rate ^{1*}Associate Professor, MRM College of Pharmacy. Chintapallyguda, Hyderabad. ²Professor & Head Dept. of Pharmacy, Annamalai University, Chidambaram. ³Professor, Scient Institute of Pharmacy, Ibrahimpatnam, Hyderabad. ^{*}Author for Correspondence Mrs. S. Jyothi characteristics of poorly water insoluble drug. Also direct tableting of pharmaceutical drugs is desirable to reduce the cost of production.² Spherical crystallization technique directly transforms the fine particles produced in the crystallization or in the reaction process into a spherical shape ⁽³⁾. Agglomerates exhibit improved secondary characteristic like flowability and compressibility so that direct tableting is possible without further processing. The literature citation reveals that spherical crystals can be made in various ways such as Simple crystallization, Ammonia diffusion system method, Emulsion solvent diffusion method and Neutralization method. Out of these methods available to prepare spherical agglomerates, simple spherical crystallization is very easy, common and faster relative to other methods⁴ This technique as the name indicates, provides crystalline agglomerates which are spherical in shape, which exhibit excellent micromeritic properties of many drugs such as Fenbrufen⁵, ibuprofen⁶, furosemide⁷, indomethacin⁸, aminophylline⁹, enoxacin¹⁰, tolbutamide¹¹, sulphamethoxazole¹², phenytoin¹³ and norfloxacin.¹⁴ Non-steroidal anti-inflammatory drugs are the most frequently prescribed preparations, Zaltoprofen is a novel NSAID drug exhibit poor flow and compression characteristics and hence it is a suitable candidate for spherical crystallization process to improve flow properties and compressibility. Further, Zaltoprofen shows incomplete and poor oral bioavailabilty due to low queous solubility¹⁵, hence in such case it is a valuable goal to improve therapeutic efficacy. In the present study, it was planned to prepare spherical crystals of Zaltoprofen to improve the micromeritic properties and dissolution properties using Sodium alginate which is hydrophilic polymer.¹⁶ #### **MATERIALS** Zaltoprofen was obtained as a gift sample from M.S Hetero pharmaceutical, Hyderabad. Sodium alginate was obtained from S.D. Fine chemicals Mumbai. Dichloromethane, Acetone and Methanol were supplied from S.D. Fine chemicals Mumbai. #### **METHODS** #### PREPARATION OF ZALTOPROFEN SPHERICAL AGGLOMERATES Spherical agglomeration of Zaltoprofen was prepared by simple agglomeration technique using three solvent systems. It involved a good solvent, a bad solvent and a bridging liquid. Acetone, dichloromethane and water were selected as good solvent, bridging liquid and poor solvent. These solvents were successfully used in previous studies. A solution of Zaltoprofen (500 mg) in acetone (3 ml) was added to a solution of Sodium alginate (1-4% w/v) in 100 ml distilled water. The mixture was stirred continuously using digital mechanical stirrer (IKA motors. Mumbai) at 500 rpm, the bridging liquid (Dichloromethane; 0.5 ml) was added drop wise (table 1) and stirring was continued for 30 min. The agglomerates were separated by filtration using whatman filter paper (No. 1) and dried for 24 hours at room temperature. Table 1: Formulation of Zaltoprofen Spherical agglomerates. | Ingredients | FI | F2 | F3 | F4 | |------------------|-----|-----|-----|-----| | Zaltoprofen (mg) | 500 | 500 | 500 | 500 | | Sod. Alg. (%) | 1% | 2% | 3% | 4% | | Acetone (ml) | 3 | 3 | 3 | 3 | | DCM (ml) | 0.5 | 0.5 | 0.5 | 0.5 | | Water (ml) | 100 | 100 | 100 | 100 | ## EVALUATION OF ZALTOPROFEN SPHERICAL AGGLOMERATES Shape The shape of the crystals was observed under optical microscope (10 magnification) attached to computer. #### Crystal density (o) It is the density of the actual solid material. This was determined by liquid displacement method by using 25 cc Specific gravity bottle with Toluene as immersion fluid. Three replicate determinations were made and the mean Calculated. #### Bulk density (ρ_b) It is defined as the mass of a powder divided by the bulk volume. This was determined by following the method¹⁷. A sample of 25.0 cc of powder from each batch, which has been previously lightly shaken in a closed container to break any agglomerates formed, was introduced into a 100 ml graduated cylinder. The cylinder was then dropped at 2-second intervals onto a hard wood surface three times from a height of 1 inch. The bulk density was thus obtained by dividing the weight of the sample in grams by the final volume in cc of the sample contained in the cylinder. Three replicate determinations were made and the mean calculated. (Remi Motors, Bombay, India). #### Tap density (ρ_t) It is defined as the mass of a powder divided by the tap volume. A loosely packed volume of 25 cc of the powder from each batch was poured in a measuring cylinder by means of a funnel, after shaking lightly in a closed container. After observing the initial volume, the cylinder was mechanically raised and allowed to fall under its own weight on a hard surface from a height of 2.5 cm at the rate of 120 taps per minute, until no further change in the volume was observed. The tap density was calculated by dividing the weight of the sample in grams by the final volume in c.c. of the sample contained in the cylinder. Three replicate determinations were made and mean calculated. #### % Compressibility (% C) Carr derived¹⁸ this dimensionless quantity which proves to be useful to the same degree as that of angle of repose values for predicting the flow behaviour. The more compress a material is, the less flowable it will be and the less compressibility, the more flowable. Compressibility indirectly gives an excellent picture of uniformity in size and shape, cohesion and moisture content. The formula used was, $$\begin{tabular}{ll} \begin{tabular}{ll} \beg$$ The computed values for the different batches of crystals were expressed in percent and tabulated. #### Hausner's ratio¹⁹ Particles with high interparticulate friction or cohesiveness have Hausner ratio greater than 1.6 and % compressibility values higher than 40, whereas powder with Hausner ratio less than 1. 2 and % compressibility between 5 to 17 can be classified as free flowing powders. Hausner ratio was calculated using following formula. #### **Porosity** The state of packing of a powder is described by its porosity, which is defined as the ratio of the void volume to the bulk volume of the packing. Porosity is frequently expressed in percent. Porosity values were computed for all batches using the formula. #### Angle of repose (\$\dagge\$) Angle of repose was determined for all the batches as an index of flow behaviour using basically, the method suggested by Philpel²⁰. The height H and mean radius r measured from five different directions were used to calculate the angle of repose, using the formula, Angle of Repose (ϕ) = tan⁻¹ H / r Five replicate determinations were made in similar conditions of relative humidity and mean angle of repose values were calculated. #### Scanning electron microscopy The surface morphology of the agglomerates was assessed by scanning electron microscopy (Lexica stereo Scan S-3700; Cambridge, UK). #### **Drug content determination** The drug content of the crystals was determined by dissolving agglomerates containing 80 mg of zaltoprofen in 100 ml of methanol followed by measuring the absorbance of appropriately diluted solution spectrophotometrically. (Pharmaspec UV-1700, UV-Visible Spectrophotometer, Shimadzu, Tokyo, Japan) at 340 nm. #### **Invitro dissolution studies** The invitro dissolution studies were carried out using 8 station USP XXIII dissolution testing apparatus (Electrolab, Mumbai, India). The dissolution medium used was 900 ml, mixture of phosphate buffer solution pH 6.8 and water (1:1) used as dissolution medium 21 . The agglomerates containing 80 mg of zaltoprofen were weighed and then introduced into the dissolution medium. The medium was stirred at 50 rpm using paddle at 37 \pm 0.5 °C. The samples were collected, filtered through whatman filter paper (0.45um) and analyzed spectrophoto-metrically at 340 nm. #### RESULTS AND DISCUSSION Spherical Agglomerates of Zaltoprofen were prepared by simple spherical agglomeration, which involves a good solvent, a poor solvent and bridging liquid. From the solubility data of zaltoprofen, the solvents are selected since zaltoprofen is highly soluble in acetone, insoluble in water, acetone selected as good solvent, water as poor solvent and dichloromethane as bridging liquid as the dichloromethane has good wettability with the drug and immiscible with the water. The percentage of drug content of the prepared agglomerates showed between 93% to 98% and it was highest with F2 i.e. 98.28 ± 2.18 shown in Table 2. Table 2: Percentage drug content of Zaltoprofen Spherical Agglomerates. | Spherical crystals | Drug content (%) | |----------------------|----------------------| | Sodium Alginate (1%) | 97.18 <u>+</u> 1.58 | | Sodium Alginate (2%) | 98.28 <u>+</u> 2.18 | | Sodium Alginate (3%) | 94.82 <u>+</u> 1.81 | | Sodium Alginate (4%) | 93.61 <u>+</u> 2.26 | | ZALTOPROFEN(pure) | 100.00 <u>+</u> 0.00 | #### Micromeritic properties #### Flow properties, Porosity and Density The flow properties of zaltoprofen spherical agglomerates were studied in term of Hausner's ratio, Carr's Index and Angle of repose, which were mentioned in table 3. The Carr's index significantly reduced by the spherical agglomerates (less than 19.0) than that of pure drug (42.0) which indicates significant increase in flow rate of the agglomerates. Hausner's ratio of agglomerates was less than 1.2, which indicates improved flowability of agglomerates. Angle of repose of spherical agglomerates falls between 30 to 34, among the four formulations F2 had reduced angle of repose indicates better flow properties, this may be the significant reduction in interparticle friction because of the good spherical shape and larger size of the spherical agglomerates. The percentage of the porosity of agglomerated crystals showed significantly higher as compared to the raw crystals of zaltoprofen, increased porosity improves the wettability and dissolution rate at little extent. From the bulk, granular, and true density of the agglomerated crystals, the results indicated that all densities of the agglomerated crystals showed decrease value because of the increased in volume and the total porosity of agglomerated crystals (Table 3). Table 3: Micromeritic properties of zaltoprofen spherical crystals prepared in the presence of different concentrations of Sodium alginate and pure drug | Spherical
Crystals | LBD
(g/ml) | TBD (g/ml) | Carrs
Index | Hausner's ratio (%) | Angle of
Repose | True
Density
(g/ml) | Porosity (%) | Particle size | |-----------------------|---------------------|---------------------|----------------------|----------------------|---------------------|---------------------------|---------------------|------------------------| | F1 | 0.32+0.01* | 0.42 <u>+</u> 0.01* | 19.0 <u>+</u> 1.32* | 1.25 <u>+</u> 0.02* | 31.69 <u>+</u> 1.85 | 1.29 <u>+</u> 0.17 | 66.3 <u>+</u> 1.96 | 298.53 <u>+</u> 11.23 | | F2 | 0.40 <u>+</u> 0.02* | 0.45 <u>+</u> 0.01* | 11.11 <u>+</u> 1.62* | 1.125 <u>+</u> 0.03* | 24.77 <u>+</u> 1.98 | 1.287 <u>+</u> 0.12 | 65.03 <u>+</u> 2.31 | 530.88 <u>+</u> 19.63 | | F3 | 0.40 <u>+</u> 0.02* | 0.42 <u>+</u> 0.01* | 4.76 <u>+</u> 1.82* | 1.05 <u>+</u> 0.02* | 34.42 <u>+</u> 2.01 | 1.24 <u>+</u> 0.09 | 67.74 <u>+</u> 2.90 | 1333.52 <u>+</u> 28.33 | | F4 | 0.35 <u>+</u> 0.01* | 0.40 <u>+</u> 0.02* | 10.10 <u>+</u> 1.05* | 1.10 <u>+</u> 0.02* | 30.12 <u>+</u> 1.32 | 1.36 <u>+</u> 0.10 | 70.7 <u>+</u> 2.12 | 1888 <u>+ 25.36</u> | | Pure Drug | 0.30 +0.01 | 0.52 + 0.02 | 42.00 + 2.36 | 1.69 +0.03 | 42.61+ 1.99 | 1.55+0.46 | 55.50+ 2.21 | 85.55 + 10.25 | #### Scanning electron microscopy The results of surface morphology studies were shown in SEM Fig 1. The parent zaltoprofen crystals were in the form of fine needles, which is in confirmation with the earlier report. This long-needle form of zaltoprofen leads to very poor flow and compressional difficulties. The prepared agglomerates were spherical to larger extent and remaining was irregular in shape with smooth surface, which enabled them flow very easily. Fig 1: 1(a) SEM micrograph pure zaltoprofen, 1(b), 1(c) SEM micrographs of Spherical agglomerates F2. #### FTIR Spectroscopy IR spectroscopy and DSC studied the possible interaction between the drug and the carrier. The interaction often leads to identifiable changes in the IR profile and melting point of drug. The principal IR peaks of pure zaltoprofen and IR peaks of spherical agglomerates were shown in Table 4, Figure 2 (a), (b). No considerable changes were observed in the IR peaks of crystals when compared to pure zaltoprofen. These observations indicate the absence of well-defined interaction between zaltoprofen, sodium alginate and other additives used in the crystals. Table 4: FTIR Wave numbers of pure drug and sodium alginate spherical crystals. | Samples | Major peaks (Wave numbers), cm ⁻¹ | |---|---| | Pure Zaltoprofen | 1705.08, 1672.58, 1588.29, 1458.11, 1014.06, 603.34 | | Spherical Crystals (2% Sodium Alginate) | 1704.79, 1672.52, 1588.35, 1458.10, 1040.43, 603.43 | Fig 2: IR spectra of a) Zaltoprofen b) Spherical agglomerates F2. #### Differential scanning calorimetric studies The DSC thermograms of pure zaltoprofen and its crystal forms were shown in Fig. 3 (a), (b). Pure zaltoprofen showed a sharp endotherm at $140.81~^{\circ}$ C corresponding to its melting point. Zaltoprofen spherical crystals showed sharp endotherm at $140.70~^{\circ}$ C. There was negligible change in the melting endotherms of the spherical crystals compared to pure drug. This observation further supports the IR spectroscopy results, which indicated the absence of any interactions between drug, Sodium alginate and additives used in the preparation. However, there was a decrease, although very little, in the melting point of drug in spherical crystals compared to that of pure zaltoprofen. FTIR spectra and DSC studies of agglomerates showed that, the drug was stable in the prepared formulations indicating the absence of interaction between zaltoprofen and hydrophilic polymers. Fig 3: DSC Patterns of a) Zaltoprofen b) Spherical agglomerate F2 #### X-Ray diffraction studies Comparison of powder X-ray diffraction spectra of zaltoprofen and spherical agglomerates indicate considerable decrease in crystallinity of spherical agglomerates. After the recrystallization, no polymorphic phenomenon was detected, as all powder X-ray diffraction patterns of primary crystals consisting of agglomerates were consistent with the pattern of original crystals. The decrease in crystallinity of the drug indicates increase in amorphous nature the drug, which may increase in the solubility of the drug. After the recrystallization, no polymorphic phenomenon is detected using X-ray diffractometer as all powder X-ray diffraction patterns of the primary crystals consisting of agglomerates were consistent with the pattern of original crystals Fig 4(a), (b). Fig 4: X-Ray diffraction Patterns of a) Zaltoprofen b) Spherical agglomerate F2 #### Dissolution studies The results of in vitro dissolution studies are shown in Figure 5. Pure sodium alginate exhibited less release at the end of 120 min. whereas spherical crystals improved the dissolution rate of sodium alginate. The drug release after 120 minutes from the spherical crystals prepared in the presence of 1 % to 4 % w/v sodium alginate were 83.1, 99.3, 88.5, 73.2%% respectively, which indicates that the spherical crystals prepared with 2 % w/v sodium alginate exhibited maximum drug release (99.3 \pm 0.29 %) and the drug release was not increased with spherical crystals prepared with higher concentration of sodium alginate i.e., 3% and 4 % w/v which may be attributed to the fact that the dissolution rate may be retarded as the size of the spherical crystals was more in case of 3 % w/v and 4 % w/v spherical crystals of sodium alginate. Fig 5: Dissolution profiles of pure drug and agglomerates prepared in sodium alginate (1% to 4% w/v) #### **CONCLUSION** The spherically agglomerated crystals of zaltoprofen were successfully prepared for direct tableting by the spherical agglomeration technique. The micromeritic properties of agglomerates such as flowability, packability and compactibility were dramatically improved, resulting in successful direct tableting. The agglomerates have shown improved invitro drug release performance comparable with untreated zaltoprofen. The main factor in the improvement of flowability and packability was due to their spherical shapes and smooth surfaces. Therefore, from the above it can be concluded that spherical crystallization is a tool of particle engineering, which can transform the poorly flowable drug powder into spherical crystals, those are best suited for direct compression. The conversion of poorly flowable powder into spherical agglomerates enhances the speed of tableting because of elimination of most of steps, which required in the wet granulation and in dry granulation process. #### REFERENCES - 1. Ali Nikhodchi, Davood, Hasanzadeh. An improvement of physicomechanical properties of carbamazepine crystal, Iranian journal of Pharmaceutical research. 2007; 6(2) 83-93 - 2. R.F.Shangraw, *compressed tablets by direct compression*, in Pharmaceutical Dosage Forms: Tablets, vol.1 (Ed.H.A.Liberman, L.Lachman, J.B.Schwartz) Marcel Dekkar, New york, 1989, pp. 195-246 - 3. KawashimaY.,Okumaura M. and Takenaka H. (1982)). Science, 216:1128 - 4. Chourasia M.K., Nitin K. Jain., S. Jain, Jain N.K., and Jain S.K: Preparation and characterization of Agglomerates of Flurbiprofen by Spherical Crystallization technique, Ind. Journal of Pharm. Sciences, May-June 2003,287-290) - 5. Martino D.P., Barthelemy C., Piva F., Joiris E., Palmieri G.F. and Martelli S. (1991). Ind. Pharm., 25: 1073. - 6. Jbilou M., Ettabia A., Guyot-Hermann A.M. and Guyot J. C. (1999). Drug develop. Ind. Pharm., 25: 297. - 7. Dinesh K, Kumar PS, Waghmode Amol P, Dhabale Avinash S. Spherical crystallization of glipizide for improvement of micrometric properties. IJPLS. 2010;1(8):463-6. - 8. Kawashima Y, Lin SY, Ogawa M, Handa T, Takenaka H. Preparations of agglomerated crystals of polymorphic mixtures and a new complex of indomethacin—epirizole by the spherical crystallization technique. Journal of pharmaceutical sciences. 1985 Nov 1;74(11):1152-6. - 9. Kawashimax Y, Aoki S, Takenaka H, Miyake Y. Preparation of spherically agglomerated crystals of aminophylline. Journal of pharmaceutical sciences. 1984 Oct 1;73(10):1407-10. - 10. Kawashima Y, Okumura M, Takenaka H, Kojima A. Direct preparation of spherically agglomerated salicylic acid crystals during crystallization. Journal of pharmaceutical sciences. 1984;73(11):1535-8. - 11. Sano A, Kuriki T, Handa T, Takeuchi H, Kawashima Y. Particle design of tolbutamide in the presence of soluble polymer or surfactant by the spherical crystallization technique: improvement of dissolution rate. Journal of pharmaceutical sciences. 1987 Jun 1;76(6):471-4. - 12. Kawashima Y, Ohno H, Takenaka H. Preparation of spherical matrixes of prolonged-release drugs from liquid suspension. Journal of Pharmaceutical Sciences. 1981 Aug 1;70(8):913-6. - 13. Kawashima Y, Handa T, Takeuchi H, Okumura M, Katou H, Nagata O. Crystal modification of phenytoin with polyethylene glycol for improving mechanical strength, dissolution rate and bioavailability by a - spherical crystallization technique. Chemical and pharmaceutical bulletin. 1986 Aug 25;34(8):3376-83. - 14. Puechagut HG, Bianchotti J, Chiale CA. Preparation of norfloxacin spherical agglomerates using the ammonia diffusion system. Journal of pharmaceutical sciences. 1998 Apr 1;87(4):519-23. - 15. The Japanesse Pharmacopoeia, 15th edition, 1242-1243. - Hand book of Pharmaceutical Exciepients, Raymond C Rowe, Paul J, Sheskey and Sian C owen, 1736-1743 - 17. Martin A; 2002. Micromeritics. In:Physical Pharmacy: Physical chemical principles in the pharmaceutical sciences, 4th Edition; Lippincott Williams &Wilkins, Baltimore, Maryland-USA. - 18. Carr R.L, Carr, R.L. Evaluating Flow Properties of Solids. Chemical Engineering, 72, 163, 72 and 69, (1965). - 19. Wells J, 2002, Pharmaceutical preformulation: The physico chemical properties of drug substances. In: Pharmaceutics The science of dosage form design. M. E. Aulton (Ed), 2nd Ed, Churchill Livingstone. London: P.P 113-138. - 20. Philpel, N., J. Pharm. Pharmacol., 16, 705, (1964). Available from: http://lib3.dss.go.th/fulltext/scan_ebook/j.of_pharma_1964_v16_n11.pdf - 21. The Japanesse Pharmacopoeia, 15th edition, 1243-1244.