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Abstract 

 

Published on: 05.01.2026 

Pharmacovigilance (PV) has historically relied on manual intake and clinical 

review of spontaneous adverse event reports, constrained by under-reporting, 

variable data quality, duplicate cases, and operational latency. Over the last 

decade, the digitalization of Individual Case Safety Reports (ICSRs) and the 

maturation of machine learning (ML), natural language processing (NLP), and 

“augmented intelligence” workflows have enabled a shift from document-centric, 

manual processing toward data-centric, semi-automated surveillance. This review 

synthesizes the evolution from manual safety reporting to AI-enabled PV across 

the ICSR lifecycle: intake and triage, data extraction and normalization, coding 

(MedDRA/WHO Drug), case processing and medical assessment support, 

duplicate detection, signal detection and validation, and regulatory submission. 

We summarize the enabling regulatory/technical standards (e.g., ICH E2B (R3), 

EMA GVP), global surveillance ecosystems (FAERS, EudraVigilance, 

VigiBase), and contemporary guidance (e.g., CIOMS Working Group XIV) that 

shape responsible AI adoption. We present publication-ready tables describing (i) 

the PV technology timeline, (ii) AI methods mapped to PV tasks with validation 

metrics and risks, and (iii) an implementation governance checklist. A figure 

proposes an end-to-end AI-enabled PV operating model with human oversight 

and audit ability. We conclude that the most durable value arises from targeted 

automation (coding, extraction, prioritization) combined with robust governance 

data quality management, bias monitoring, explain ability, and continuous 

performance verification rather than full replacement of expert judgment. 
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1. INTRODUCTION 

1.1 From “paper cases” to data ecosystems 

Pharmacovigilance aims to detect, assess, understand, and prevent adverse effects or other medicine-

related problems. For decades, PV operations were anchored in manual workflows: paper forms and narrative 

reports reviewed by safety professionals who extracted key fields (patient, suspect drug, reaction, and outcome), 

coded medical concepts, assessed seriousness and expectedness, and prepared regulatory submissions. This 

model delivered important public health gains but struggled under expanding product portfolios, global 

reporting obligations, and exploding data volume from post-marketing use. 

The modern PV environment is now defined by large, heterogeneous data streams and formalized 

reporting standards. At the center is the ICSR—standardized safety case data intended for electronic exchange. 

ICH E2B (R3) provides the ICSR specification and implementation artifacts that enable consistent transmission 

of structured safety data between marketing authorization holders (MAHs), regulators, and partners [1].  

1.2 Global surveillance systems and why scale changed everything 

Global safety surveillance is supported by large repositories and national/regional systems: 

 FAERS (US FDA) supports post-marketing safety surveillance and provides a public dashboard for 

querying adverse event reports [2]. 

 EudraVigilance (EU/EEA) is EMA’s system for managing and analyzing suspected adverse 

reactions, supporting early detection of potential safety issues [3]. 
 VigiBase (WHO Programmed for International Drug Monitoring) is a global database of 

ICSRs maintained by the Uppsala Monitoring Centre (UMC) on behalf of WHO and member states; 

it contains tens of millions of reports and supports signal identification [4].  

In parallel, “active surveillance” capabilities using routinely collected healthcare data (claims/EHR) 

complement spontaneous reporting. The FDA Sentinel Initiative is explicitly positioned as a national electronic 

system for proactive post-market monitoring, launched following FDAAA 2007 and complementing FDA’s 

broader safety monitoring [5, 6].  

1.3 Why AI now: operational pressure plus technical feasibility 

Three forces converged to accelerate AI in PV: 

1. Volume and velocity: More reports, more products, more geographies, and increasing expectations 

for timeliness. 

2. Unstructured narratives: Many clinically important details live in free text (medical history, 

temporality, DE challenge/re challenge, and confounders). 

3. Mature ML/NLP tooling: Named entity recognition, document classification, concept 

normalization, and deep learning made reliable extraction, prioritization, and coding increasingly 

feasible. 

Recent PV literature increasingly frames the goal as augmentation—automating high-throughput, 

repetitive steps while keeping clinical accountability and regulatory compliance under human oversight [7–9]. 

2. Methods (PRISMA-style for a narrative / semi-systematic review) 

2.1 Review design 

We performed a narrative review with semi-systematic elements aligned to PRISMA principles 

(transparent search strategy, documented screening logic, and structured synthesis). The review emphasizes 

operational PV tasks where AI is applied: ICSR intake/triage, data extraction, MedDRA/WHODrug coding, 

duplicate detection, case processing productivity/quality, signal detection, and integration with active 

surveillance. 

2.2 Information sources 

We targeted peer-reviewed literature and authoritative guidance from regulators/standards bodies and 

PV organizations. Sources included: 

 Pub Med/Medline (AI/NLP in pharmacovigilance; ICSR processing; social media PV) 

 Regulatory and standards sites: ICH (E2B(R3), MedDRA), EMA (GVP, EudraVigilance), FDA 

(FAERS, Sentinel) 

 PV organizations and guidance: WHO-UMC (VigiBase), CIOMS (AI in PV) 

2.3 Example search strategy (adaptable) 

A representative Boolean query (Pub Med): 

 (“pharmacovigilance” OR “drug safety” OR ICSR OR “adverse event reporting”) AND (“artificial 

intelligence” OR “machine learning” OR “natural language processing” OR “deep learning” OR 
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“large language model” OR automation OR “augmented intelligence”) filters: English; 2014–2025; 

humans. 

2.4 Eligibility criteria 

Inclusion: 

(i) AI/ML/NLP methods applied to PV tasks; (ii) evaluations of automation in case processing/coding; 

(iii) signal detection methods using spontaneous reports or complementary real-world data; (iv) 

authoritative guidance (ICH/EMA/FDA/WHO/CIOMS). 

Exclusion: 

(ii) Pure preclinical toxicology AI (unless connected to PV), non-medicine safety domains, editorials 

without methods/operational relevance (except landmark guidance). 

2.5 Screening and synthesis 

Titles/abstracts were screened for PV task relevance, then full texts were evaluated for:  

(i) clear task definition,  

(ii) Data source and labeling approach,  

(iii) Evaluation metrics, 

(iv) Risks/limitations (bias, generalizability), and 

(v) Operational integration considerations. Findings were synthesized thematically by ICSR lifecycle 

stage and surveillance objective. 

3. Results and Thematic Synthesis 

3.1 Manual PV: strengths and structural limitations 

Manual PV processing provides nuanced clinical interpretation—especially for complex cases 

involving poly pharmacy, co morbidity, and ambiguous temporality. However, manual processing is vulnerable 

to: 

 Inconsistent extraction and coding across processors and vendors 

 Duplicate cases and fragmented follow-ups 

 Latency from intake to signal-relevant aggregation 

 Quality variation driven by source heterogeneity (consumers vs. HCP vs. literature) 

Regulators explicitly caution that spontaneous report repositories support signal generation but do not 

prove causality; FAERS documentation emphasizes that the presence of reports does not mean a product caused 

the event and that FAERS data is not a direct indicator of product safety profile [2].  

3.2 Digitization and standardization: the substrate AI needs 

AI performance depends on standard data structures and controlled terminologies. Key pillars include: 

 ICSR electronic transmission (ICH E2B (R3)) enabling structured fields and consistent exchange 

[1].  

 Good Pharmacovigilance Practices (EMA GVP Module VI) guiding collection, management, 

and submission of suspected adverse reaction reports in the EU framework [10] 

 MedDRA as a standardized medical terminology enabling consistent adverse event coding and 

international information sharing [11]. 

Without these, AI outputs are hard to validate, compare, and audit. 

4. AI across the ICSR Lifecycle: where it works, where it breaks 

4.1 Intake, triage, and case prioritization 

Objective: rapidly identify valid cases, prioritize serious/expedited reports, and route to appropriate 

workflows (literature, solicited programs, special situations). 

AI approaches: document classification, language detection, seriousness prediction, “valid ICSR” 

criteria extraction, and priority scoring. 

Value: reduced cycle time and improved queue management, especially during surges (e.g., new 

launches, safety crises). 

Risks: false negatives (missing expedited cases), distribution shift across regions/languages, and over-

reliance on incomplete narratives. 
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4.2 Narrative text extraction and normalization (NLP) 

NLP is used to extract: suspect drug(s), reaction(s), onset dates, dose, indications, medical history, 

outcomes, and reporter type from free text. Typical architectures include transformer-based models with entity 

recognition plus normalization to dictionaries (MedDRA for events; WHO Drug for products). 

Common failure modes: abbreviations, misspellings, multilingual narratives, implicit temporality, and 

context (negation: “no rash”). Robust performance requires curate training sets and continuous monitoring. 

4.3 Automated coding (MedDRA/WHO Drug) and productivity gains 

Coding is a high-volume bottleneck well-suited for augmentation. WHO Drug Koda, evaluated on Vigi 

Base adverse event reports, illustrates the operational premise: automate high-confidence coding while deferring 

uncertain cases to humans, improving consistency and throughput [12].  

4.4 Case processing augmentation: deep learning for ICSR workflows 

A frequently cited example is deep-learning-based cognitive services applied to ICSR processing, 

designed to extract key characteristics and support real-world case workflows rather than purely academic 

benchmarks [13].  

What matters operationally: not just F1 score, but end-to-end impact—touch time reduction, rework 

rates, audit findings, and measurable quality improvements. 

4.5 Duplicate detection and case linkage 

Duplicate reporting is endemic: the same clinical event may be reported by consumers, HCPs, partners, 

and literature, sometimes with follow-ups. AI can help with probabilistic matching using patient/event/drug 

similarity and narrative embedding. 

Key governance requirement: explainable match rationales and conservative thresholds to avoid 

incorrect merges. 

4.6 Signal detection: from dis proportionality to hybrid ML 

Traditional statistical approaches (e.g., disproportionality analysis) remain central for spontaneous 

report signal detection, but AI increasingly augments: 

 feature generation from narratives, 

 stratified signal detection (age/sex/region), 

 prioritization and triage of candidate signals, 

 Literature and label change intelligence. 

Active surveillance systems (e.g., Sentinel) complement spontaneous reporting by enabling targeted 

analyses in healthcare data networks, supporting hypothesis testing and rapid assessment [5].  

4.7 Social media and “digital PV”: promise with persistent noise 

Mining social media for adverse drug reaction (ADR) mentions has a long research history; classic 

work demonstrated sequence labeling approaches for ADR extraction from informal text [14].  

However, social media remains challenged by confounding, unverifiable product exposure, duplicate narratives, 

and shifting platform access policies. Reviews emphasize the need to filter unsupported claims and triangulate 

with trusted sources [15]. 

5. Governance, Regulation, and “Responsible AI” in PV 

5.1 Why PV is a high-stakes AI domain 

PV outputs affect labeling, risk minimization, and benefit-risk decisions, making accuracy, auditability, 

and traceability essential. Regulatory compliance also demands that organizations can explain how case data 

were processed and submitted. 

5.2 CIOMS Working Group XIV: emerging expectations 

CIOMS has explicitly focused on principles and guidance for AI/augmented intelligence in PV, 

framing AI as a cross-disciplinary domain requiring careful definition of intended use, performance 

expectations, oversight, and accountability [16].  

5.3 Practical controls that determine success 

Across implementations, durable AI value correlates with: 

 Data quality programs (standardization, reduplication, feedback loops) 

 Model risk management (intended use, validation, drift monitoring) 

 Human-in-the-loop designs (confidence thresholds, escalation rules) 

 Audit readiness (versioning, decision logs, traceability to source text) 

 Privacy/security (especially for cloud NLP and multi-tenant tooling) 
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Table 1. Evolution of pharmacovigilance from manual to AI-enabled operations 

Era 
Core PV operating 

model 
Typical data Key limitations 

Enablers of next 

shift 

Manual / 

paper-centric 

Human extraction + 

manual coding + 

narrative review 

Paper forms, 

faxes, PDFs 

Latency, 

inconsistency, scaling 

bottlenecks 

Digitization, 

centralized 

databases 

Electronic / 

standardized 

Structured ICSR 

exchange; standard 

terminologies 

E2B(R3) 

messages; 

MedDRA-coded 

events 

Still labor intensive; 

unstructured narrative 

underused 

NLP, better data 

pipelines 

Augmented 

PV 

AI supports extraction, 

coding, prioritization 

Hybrid structured 

+ free text 

Model drift, bias, 

explain ability gaps 

Governance 

frameworks, 

continuous 

monitoring 

AI-enabled 

surveillance 

Near-real-time triage, 

automated coding at 

scale, hybrid signal 

intelligence 

Multi-source + 

active 

surveillance 

Integration 

complexity; 

accountability 

Mature MRM, 

robust QA, audit 

ability 

Key standardization foundations include ICH E2B (R3) for ICSR exchange and MedDRA for 

standardized coding.  

 

Table 2. AI methods mapped to PV tasks, validation metrics, and risks 

PV task AI approach Typical metrics 

Expected 

operational 

benefit 

Primary risks / 

controls 

Valid case 

identification / 

triage 

Text classification; 

rules + ML 

Sensitivity/recall 

(must be high), PPV 

Faster routing; 

reduced backlog 

False negatives; use 

conservative thresholds 

+ QA sampling 

Entity extraction 

from narratives 

NER transformers; 

negation handling 

F1, span accuracy Less manual 

transcription 

Language drift; 

maintain labeled sets, 

monitor drift 

Drug & event 

coding 

Dictionary matching 

+ ML ranking 

Top-1/Top-k 

accuracy 

Throughput; 

consistency 

Over coding/under 

coding; “code when 

confident” policy 

Duplicate 

detection 

Similarity models; 

embedding 

Precision at high 

recall 

Reduced 

duplicate noise 

Incorrect merges; 

require reviewer 

confirmation 

Signal 

prioritization 

Hybrid ML + 

disproportionality 

AUROC + 

calibration 

Focus reviewer 

time 

Black-box risk; require 

explainable features & 

dashboards 

Social media 

screening 

NLP classifiers; ADR 

extraction 

Precision (high), 

triage yield 

Early weak 

signals 

Noise; triangulate with 

trusted sources 

Examples of automation in PV include WHO Drug Koda evaluations for automated drug coding and 

deep-learning approaches for case processing augmentation.  

 

Table 3. Governance checklist for implementing AI in pharmacovigilance (submission-grade) 

Domain Minimum control set Evidence artifacts (audit-ready) 

Intended use & scope Define task boundaries; exclusions; 

escalation 

Use-case SOP; model card; risk 

assessment 

Data governance Provenance, labeling protocol, access 

controls 

Data dictionary; lineage; QC logs 

Validation & 

performance 

Pre-deployment validation; subgroup 

checks 

Validation report; bias assessment; test 

sets 

Human oversight Confidence thresholds; override 

workflow 

Review logs; sampling plan; escalation 

records 
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Change control Versioning; release approvals; rollback Change requests; release notes; approvals 

Continuous monitoring Drift metrics; periodic re-validation Monitoring dashboards; periodic QA 

reports 

Regulatory alignment Map to E2B(R3)/GVP obligations Compliance mapping; inspection-ready 

pack 

CIOMS WG XIV highlights the need for oversight, trustworthiness, and accountability when deploying 

AI in PV. 

 

6. DISCUSSION 

6.1 What is truly “reinvented” in AI-enabled PV? 

The most meaningful reinvention is not replacing medical judgment but restructuring work so that 

experts spend time on interpretation rather than transcription. Across organizations, the highest-ROI 

applications tend to be: 

 automated coding (products/events), 

 extraction of structured fields from narratives, 

 duplicate detection support, 

 Prioritization of queues and candidate signals. 

These are high-volume; repetitive tasks with measurable quality and efficiency outcomes. 

6.2 Why many AI pilots fail to scale 

Common causes include: 

 Weak training labels (inconsistent “ground truth” from heterogeneous processors) 

 Over fitting to one vendor’s narratives or one region/language 

 Lack of end-to-end metrics (time saved in the workbench, rework rate, compliance impact) 

 Insufficient governance (no drift monitoring, no change control, poor audit trails) 

6.3 The emerging role of LLMs 

Large language models can summarize narratives, draft case narratives, assist medical reviewers, and 

support literature triage. However, PV requires conservative deployment patterns: retrieval-augmented 

workflows, strict source traceability, and prevention of hallucinations. In practice, LLMs are best treated as 

assistive layers with mandatory citation to source documents and constrained outputs. 

6.4 Equity, bias, and global generalizability 

PV is inherently global. AI systems trained on reports from one geography or reporter type may 

underperform elsewhere. Subgroup evaluation (age, sex, language, and region) and continuous monitoring are 

essential to prevent systematic under-detection in under-represented populations. 

 

7. CONCLUSION 

Pharmacovigilance has moved from manual, document-centric operations to standardized electronic 

reporting and now to AI-enabled surveillance. The enabling infrastructure—ICSR standards (ICH E2B (R3)), 

global databases (FAERS, EudraVigilance, VigiBase), and controlled terminologies (MedDRA)—makes it 

feasible to deploy AI at scale, particularly for extraction, coding, and prioritization. The dominant 

implementation lesson is that augmentation plus governance outperforms “full automation”: organizations 

realize the most sustainable gains when AI is embedded into inspection-ready workflows with human oversight, 

performance monitoring, and strong data governance. Future progress will depend less on novel algorithms and 

more on reliable operating models: transparent validation, drift detection, auditability, and aligned regulatory 

expectations. 
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