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Gt Abstract
Pharmacovigilance (PV) has historically relied on manual intake and clinical
Published on: 05.01.2026 review of spontaneous adverse event reports, constrained by under-reporting,
variable data quality, duplicate cases, and operational latency. Over the last
Published by: decade, the digitalization of Individual Case Safety Reports (ICSRs) and the

maturation of machine learning (ML), natural language processing (NLP), and
“augmented intelligence” workflows have enabled a shift from document-centric,
manual processing toward data-centric, semi-automated surveillance. This review

Futuristic Publications

synthesizes the evolution from manual safety reporting to Al-enabled PV across
2026|Allrightsreserved. the ICSR lifecycle: intake and triage, data extraction and normalization, coding
(MedDRA/WHO Drug), case processing and medical assessment support,
duplicate detection, signal detection and validation, and regulatory submission.

— We summarize the enabling regulatory/technical standards (e.g., ICH E2B (R3),
Crrritom Chmmame EMA GVP), global surveillance ecosystems (FAERS, EudraVigilance,
Attributiond.Olnternational | VigiBase), and contemporary guidance (e.g., CIOMS Working Group XIV) that
shape responsible Al adoption. We present publication-ready tables describing (i)

the PV technology timeline, (ii) Al methods mapped to PV tasks with validation
metrics and risks, and (iii) an implementation governance checklist. A figure

License.

proposes an end-to-end Al-enabled PV operating model with human oversight
and audit ability. We conclude that the most durable value arises from targeted
automation (coding, extraction, prioritization) combined with robust governance
data quality management, bias monitoring, explain ability, and continuous
performance verification rather than full replacement of expert judgment.

Keywords: pharmacovigilance; ICSR; adverse event; NLP; machine learning;
signal detection; E2B(R3); FAERS; EudraVigilance; VigiBase; CIOMS.
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1. INTRODUCTION

1.1 From “paper cases” to data ecosystems

Pharmacovigilance aims to detect, assess, understand, and prevent adverse effects or other medicine-
related problems. For decades, PV operations were anchored in manual workflows: paper forms and narrative
reports reviewed by safety professionals who extracted key fields (patient, suspect drug, reaction, and outcome),
coded medical concepts, assessed seriousness and expectedness, and prepared regulatory submissions. This
model delivered important public health gains but struggled under expanding product portfolios, global
reporting obligations, and exploding data volume from post-marketing use.

The modern PV environment is now defined by large, heterogeneous data streams and formalized
reporting standards. At the center is the ICSR—standardized safety case data intended for electronic exchange.
ICH E2B (R3) provides the ICSR specification and implementation artifacts that enable consistent transmission
of structured safety data between marketing authorization holders (MAHs), regulators, and partners [1].

1.2 Global surveillance systems and why scale changed everything

Global safety surveillance is supported by large repositories and national/regional systems:

e FAERS (US FDA) supports post-marketing safety surveillance and provides a public dashboard for
querying adverse event reports [2].

e EudraVigilance (EU/EEA) is EMA’s system for managing and analyzing suspected adverse
reactions, supporting early detection of potential safety issues [3].

e VigiBase (WHO Programmed for International Drug Monitoring) is a global database of
ICSRs maintained by the Uppsala Monitoring Centre (UMC) on behalf of WHO and member states;
it contains tens of millions of reports and supports signal identification [4].

In parallel, “active surveillance” capabilities using routinely collected healthcare data (claims/EHR)
complement spontaneous reporting. The FDA Sentinel Initiative is explicitly positioned as a national electronic
system for proactive post-market monitoring, launched following FDAAA 2007 and complementing FDA’s
broader safety monitoring [5, 6].

1.3 Why AI now: operational pressure plus technical feasibility

Three forces converged to accelerate Al in PV:

1. Volume and velocity: More reports, more products, more geographies, and increasing expectations
for timeliness.

2. Unstructured narratives: Many clinically important details live in free text (medical history,
temporality, DE challenge/re challenge, and confounders).

3. Mature ML/NLP tooling: Named entity recognition, document classification, concept
normalization, and deep learning made reliable extraction, prioritization, and coding increasingly
feasible.

Recent PV literature increasingly frames the goal as augmentation—automating high-throughput,

repetitive steps while keeping clinical accountability and regulatory compliance under human oversight [7-9].

2. Methods (PRISMA-style for a narrative / semi-systematic review)

2.1 Review design

We performed a narrative review with semi-systematic elements aligned to PRISMA principles
(transparent search strategy, documented screening logic, and structured synthesis). The review emphasizes
operational PV tasks where Al is applied: ICSR intake/triage, data extraction, MedDRA/WHODrug coding,
duplicate detection, case processing productivity/quality, signal detection, and integration with active
surveillance.

2.2 Information sources
We targeted peer-reviewed literature and authoritative guidance from regulators/standards bodies and
PV organizations. Sources included:
e Pub Med/Medline (AI/NLP in pharmacovigilance; ICSR processing; social media PV)
e Regulatory and standards sites: ICH (E2B(R3), MedDRA), EMA (GVP, EudraVigilance), FDA
(FAERS, Sentinel)
e PV organizations and guidance: WHO-UMC (VigiBase), CIOMS (Al in PV)

2.3 Example search strategy (adaptable)
A representative Boolean query (Pub Med):

e (“pharmacovigilance” OR “drug safety” OR ICSR OR “adverse event reporting”) AND (“artificial
intelligence” OR “machine learning” OR “natural language processing” OR “deep learning” OR
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“large language model” OR automation OR “augmented intelligence”) filters: English; 2014-2025;
humans.

2.4 Eligibility criteria
Inclusion:

(1) AI/ML/NLP methods applied to PV tasks; (ii) evaluations of automation in case processing/coding;
(iii) signal detection methods using spontaneous reports or complementary real-world data; (iv)
authoritative guidance (ICH/EMA/FDA/WHO/CIOMS).
Exclusion:
(i) Pure preclinical toxicology Al (unless connected to PV), non-medicine safety domains, editorials
without methods/operational relevance (except landmark guidance).

2.5 Screening and synthesis
Titles/abstracts were screened for PV task relevance, then full texts were evaluated for:
(i) clear task definition,
(ii) Data source and labeling approach,
(iii) Evaluation metrics,
(iv) Risks/limitations (bias, generalizability), and

(v) Operational integration considerations. Findings were synthesized thematically by ICSR lifecycle
stage and surveillance objective.

3. Results and Thematic Synthesis

3.1 Manual PV: strengths and structural limitations
Manual PV processing provides nuanced clinical interpretation—especially for complex cases
involving poly pharmacy, co morbidity, and ambiguous temporality. However, manual processing is vulnerable
to:
Inconsistent extraction and coding across processors and vendors
Duplicate cases and fragmented follow-ups
Latency from intake to signal-relevant aggregation
Quality variation driven by source heterogeneity (consumers vs. HCP vs. literature)

Regulators explicitly caution that spontaneous report repositories support signal generation but do not
prove causality; FAERS documentation emphasizes that the presence of reports does not mean a product caused
the event and that FAERS data is not a direct indicator of product safety profile [2].

3.2 Digitization and standardization: the substrate Al needs
Al performance depends on standard data structures and controlled terminologies. Key pillars include:

e ICSR electronic transmission (ICH E2B (R3)) enabling structured fields and consistent exchange
[1].

e Good Pharmacovigilance Practices (EMA GVP Module VI) guiding collection, management,
and submission of suspected adverse reaction reports in the EU framework [10]

e MedDRA as a standardized medical terminology enabling consistent adverse event coding and
international information sharing [11].

Without these, Al outputs are hard to validate, compare, and audit.
4. Al across the ICSR Lifecycle: where it works, where it breaks

4.1 Intake, triage, and case prioritization

Objective: rapidly identify valid cases, prioritize serious/expedited reports, and route to appropriate
workflows (literature, solicited programs, special situations).

Al approaches: document classification, language detection, seriousness prediction, “valid ICSR”
criteria extraction, and priority scoring.

Value: reduced cycle time and improved queue management, especially during surges (e.g., new
launches, safety crises).

Risks: false negatives (missing expedited cases), distribution shift across regions/languages, and over-
reliance on incomplete narratives.
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4.2 Narrative text extraction and normalization (NLP)

NLP is used to extract: suspect drug(s), reaction(s), onset dates, dose, indications, medical history,
outcomes, and reporter type from free text. Typical architectures include transformer-based models with entity
recognition plus normalization to dictionaries (MedDRA for events; WHO Drug for products).

Common failure modes: abbreviations, misspellings, multilingual narratives, implicit temporality, and
context (negation: “no rash”). Robust performance requires curate training sets and continuous monitoring.

4.3 Automated coding (MedDRA/WHO Drug) and productivity gains

Coding is a high-volume bottleneck well-suited for augmentation. WHO Drug Koda, evaluated on Vigi
Base adverse event reports, illustrates the operational premise: automate high-confidence coding while deferring
uncertain cases to humans, improving consistency and throughput [12].

4.4 Case processing augmentation: deep learning for ICSR workflows

A frequently cited example is deep-learning-based cognitive services applied to ICSR processing,
designed to extract key characteristics and support real-world case workflows rather than purely academic
benchmarks [13].

What matters operationally: not just F1 score, but end-to-end impact—touch time reduction, rework
rates, audit findings, and measurable quality improvements.

4.5 Duplicate detection and case linkage

Duplicate reporting is endemic: the same clinical event may be reported by consumers, HCPs, partners,
and literature, sometimes with follow-ups. Al can help with probabilistic matching using patient/event/drug
similarity and narrative embedding.

Key governance requirement: explainable match rationales and conservative thresholds to avoid
incorrect merges.

4.6 Signal detection: from dis proportionality to hybrid ML

Traditional statistical approaches (e.g., disproportionality analysis) remain central for spontaneous
report signal detection, but Al increasingly augments:

e feature generation from narratives,

o stratified signal detection (age/sex/region),

e prioritization and triage of candidate signals,

e Literature and label change intelligence.

Active surveillance systems (e.g., Sentinel) complement spontaneous reporting by enabling targeted
analyses in healthcare data networks, supporting hypothesis testing and rapid assessment [5].

4.7 Social media and “digital PV”: promise with persistent noise

Mining social media for adverse drug reaction (ADR) mentions has a long research history; classic
work demonstrated sequence labeling approaches for ADR extraction from informal text [14].
However, social media remains challenged by confounding, unverifiable product exposure, duplicate narratives,
and shifting platform access policies. Reviews emphasize the need to filter unsupported claims and triangulate
with trusted sources [15].

5. Governance, Regulation, and “Responsible AI” in PV

5.1 Why PV is a high-stakes Al domain

PV outputs affect labeling, risk minimization, and benefit-risk decisions, making accuracy, auditability,
and traceability essential. Regulatory compliance also demands that organizations can explain how case data
were processed and submitted.

5.2 CIOMS Working Group XIV: emerging expectations

CIOMS has explicitly focused on principles and guidance for Al/augmented intelligence in PV,
framing Al as a cross-disciplinary domain requiring careful definition of intended use, performance
expectations, oversight, and accountability [16].

5.3 Practical controls that determine success
Across implementations, durable Al value correlates with:
e Data quality programs (standardization, reduplication, feedback loops)
e  Model risk management (intended use, validation, drift monitoring)
e  Human-in-the-loop designs (confidence thresholds, escalation rules)
e Audit readiness (versioning, decision logs, traceability to source text)
e Privacy/security (especially for cloud NLP and multi-tenant tooling)
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Table 1. Evolution of pharmacovigilance from manual to Al-enabled operations

Era Core Pn\l’o(()i[;fratlng Typical data Key limitations Enabl:lr;:f(t)f next
Manual / Human extraction + Paper forms, Latency, Digitization,
paper-centric manual coding + faxes, PDFs inconsistency, scaling | centralized

narrative review bottlenecks databases
Electronic / Structured ICSR E2B(R3) Still labor intensive; NLP, better data
standardized exchange; standard messages; unstructured narrative | pipelines
terminologies MedDRA-coded underused
events
Augmented Al supports extraction, Hybrid structured | Model drift, bias, Governance
PV coding, prioritization + free text explain ability gaps frameworks,
continuous
monitoring
Al-enabled Near-real-time triage, Multi-source + Integration Mature MRM,
surveillance automated coding at active complexity; robust QA, audit
scale, hybrid signal surveillance accountability ability
intelligence

Key standardization foundations include ICH E2B (R3) for ICSR exchange and MedDRA for
standardized coding.

Table 2. Al methods mapped to PV tasks, validation metrics, and risks

Expected Primary risks /
PV task Al approach Typical metrics operational y
. controls
benefit
Valid case Text classification; Sensitivity/recall Faster routing; False negatives; use
identification / rules + ML (must be high), PPV | reduced backlog | conservative thresholds
triage + QA sampling
Entity extraction | NER transformers; F1, span accuracy Less manual Language drift;

from narratives negation handling transcription maintain labeled sets,
monitor drift

Drug & event Dictionary matching | Top-1/Top-k Throughput; Over coding/under

coding + ML ranking accuracy consistency coding; “code when
confident” policy

Duplicate Similarity models; Precision at high Reduced Incorrect merges;

detection embedding recall duplicate noise require reviewer
confirmation

Signal Hybrid ML + AUROC + Focus reviewer | Black-box risk; require

prioritization disproportionality calibration time explainable features &
dashboards

Social media NLP classifiers; ADR | Precision (high), Early weak Noise; triangulate with

screening extraction triage yield signals trusted sources

Examples of automation in PV include WHO Drug Koda evaluations for automated drug coding and
deep-learning approaches for case processing augmentation.

Table 3. Governance checklist for implementing Al in pharmacovigilance (submission-grade)

Domain

Minimum control set

Evidence artifacts (audit-ready)

Intended use & scope

Define task boundaries; exclusions;

Use-case SOP; model card; risk

escalation assessment
Data governance Provenance, labeling protocol, access Data dictionary; lineage; QC logs
controls
Validation & Pre-deployment validation; subgroup Validation report; bias assessment; test
performance checks sets

Human oversight

workflow

Confidence thresholds; override

records

Review logs; sampling plan; escalation
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Change control Versioning; release approvals; rollback Change requests; release notes; approvals

Continuous monitoring | Drift metrics; periodic re-validation Monitoring dashboards; periodic QA
reports

Regulatory alignment Map to E2B(R3)/GVP obligations Compliance mapping; inspection-ready
pack

CIOMS WG XIV highlights the need for oversight, trustworthiness, and accountability when deploying
Alin PV.

6. DISCUSSION

6.1 What is truly “reinvented” in AI-enabled PV?

The most meaningful reinvention is not replacing medical judgment but restructuring work so that
experts spend time on interpretation rather than transcription. Across organizations, the highest-ROI
applications tend to be:

e automated coding (products/events),

e extraction of structured fields from narratives,

e duplicate detection support,

e Prioritization of queues and candidate signals.

These are high-volume; repetitive tasks with measurable quality and efficiency outcomes.

6.2 Why many Al pilots fail to scale

Common causes include:

e  Weak training labels (inconsistent “ground truth” from heterogeneous processors)

e  Opver fitting to one vendor’s narratives or one region/language
Lack of end-to-end metrics (time saved in the workbench, rework rate, compliance impact)
Insufficient governance (no drift monitoring, no change control, poor audit trails)

6.3 The emerging role of LLMs

Large language models can summarize narratives, draft case narratives, assist medical reviewers, and
support literature triage. However, PV requires conservative deployment patterns: retrieval-augmented
workflows, strict source traceability, and prevention of hallucinations. In practice, LLMs are best treated as
assistive layers with mandatory citation to source documents and constrained outputs.

6.4 Equity, bias, and global generalizability

PV is inherently global. Al systems trained on reports from one geography or reporter type may
underperform elsewhere. Subgroup evaluation (age, sex, language, and region) and continuous monitoring are
essential to prevent systematic under-detection in under-represented populations.

7. CONCLUSION

Pharmacovigilance has moved from manual, document-centric operations to standardized electronic
reporting and now to Al-enabled surveillance. The enabling infrastructure—ICSR standards (ICH E2B (R3)),
global databases (FAERS, EudraVigilance, VigiBase), and controlled terminologies (MedDRA)—makes it
feasible to deploy AI at scale, particularly for extraction, coding, and prioritization. The dominant
implementation lesson is that augmentation plus governance outperforms “full automation”: organizations
realize the most sustainable gains when Al is embedded into inspection-ready workflows with human oversight,
performance monitoring, and strong data governance. Future progress will depend less on novel algorithms and
more on reliable operating models: transparent validation, drift detection, auditability, and aligned regulatory
expectations.
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