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 Abstract   
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After epilepsy and asthma, diabetes is the third most prevalent chronic 

condition in children. More lately, there has been a sharp rise in the general 

prevalence of diabetes in both adults and children. This has been partly caused 

by the obesity pandemic in children. It makes sense that this placed a financial 

strain on nations and health authorities who were coping with high rates of 

illness morbidity and possibly dangerous sequelae. Simultaneously, other 

therapeutic discoveries broadened the selection of available drugs. We 

speculate that an authority requests a report of anti- diabetic medication 

prioritizing from specialized specialists. Apart from insulin and metformin, 

some people might have another option for a third drug, and doctors may have 

more than three options available to them at any given moment many clinical 

settings. The new policy of the authority is to buy only three antidiabetic 

pharmaceutic also out of a big list of both new and old meds. In response to 

this request, we provided a recommendation based on the most extensive 

clinical research in the field as well a various qualities of these drugs.              
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INTRODUCTION 

 
Diabetes mellitus is the term is an acronym for "excessive excretion of sweet urine[1]." 

Hyperglycaemia is a hallmark of a group of metabolic illnesses known as diabetes mellitus.[2] brought caused 

by abnormalities in the action, secretion, or both of insulin. Diabetes-related chronic hyperglycaemia is linked to 

long-term harm, malfunction, and failure of several organs, particularly the heart, blood vessels, kidneys, eyes, 

and nerves. Hyperglycaemia happens when either insufficient amounts of insulin are released or when insulin 

fails to adequately excite its target cells. For T2D, there are numerous drug classes and treatment plans. Eleven 

drug classes, for instance, have been authorized for this use in the US; nine of these classes have been on the 

market since 1995 [3]. For the majority of T2D patients to attain and sustain appropriate glycaemic control 
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(GC), two classes of diabetes medicines must be used concurrently [4]. Reducing hyperglycaemia symptoms 

and lowering the chance of long-term diabetes problems are the primary objectives of anti-diabetic medication. It 

is well recognized that GC lowers the incidence of microvascular consequences, such as retinopathy and 

neuropathy, by utilizing glycosylated haemoglobin (HbA1c) as a marker [5-7]. 

 

DIABETES MELLITUS CAUSES 

The primary causes of diabetes mellitus include: 

 Beta-cell function abnormalities caused by genetics. 

 Defects in insulin action caused by genetics. 

 Exocrine pancreatic diseases. 

 Endocrinopathies, which include chemically produced or drug-induced abnormalities in hormone secretion. 

 Diabetes Mellitus Types 

 Type 1 diabetes mellitus is insulin-dependent or juvenile-onset diabetes mellitus; Type 2 diabetes mellitus is 

non-insulin-dependent or mature-onset diabetes mellitus. 

 

Type 1: Mellitus diabetes 

Patients with insulin-dependent diabetes mellitus (IDDM), which can strike at any age but is most frequently 

seen in youngsters, need to take insulin on a regular basis. characterized by the autoimmune death of beta cells, 

which results in a noticeable failure of the pancreas to release insulin. Retinal degeneration, cardiovascular 

illness, neurological damage, and kidney dysfunction all happen etc.  

Type 2: Mellitus diabetes 

Diabetes mellitus that is not insulin-dependent is known as type 2 diabetes (NIDDM). It affects 18% of people 

over 65 and makes up almost 90% of all diabetes cases that are diagnosed. When insulin receptors on insulin-

responsive cells do not react to insulin as they should, the cells are said to as "insulin resistant," which raises 

blood glucose levels. 

in Diabetes that is gestational 

"Any degree of glucose intolerance with onset or first recognition during pregnancy" is the definition of 

gestational diabetes. The prior diagnosis of gestational diabetes mellitus is one of the risk factors linked to the 

development of gestational diabetes [8] mellitus. The risk is increased by 2.1, 3.6, and 8.6 factors, respectively, 

if a person is overweight, obese, or extremely obese [9]. 

Insulin 

Insulin's primary job is to keep blood glucose levels low by opposing the coordinated action of several 

hormones that cause hyperglycemia. Untreated insulin-related illnesses typically result in severe hyperglycemia 

and a shorter lifespan due to the abundance of hyperglycemic hormones. 

The body stores insulin in units of six molecules, however the monomer is the active one. Insulin 

inhibits insulin storage for extended periods of time and can combine and create interdigitated beta-sheets, 

which can result in injection amyloidosis [10]. 

 

ANTIDIABETIC MEDICATIONS 

Insulin-Glucosidases 

One  of  the  main  components  of  western  diets  is  carbohydrates  [11]. The enzymes -

galactosidases [12], -amylase, and -glucosidases [13] break down complex carbs into monosaccharides. 

Therefore, by competitively and reversibly inhibiting the cle-glucosidases found in the brush border membrane 

of enterocytes that line the intestinal villi, inhibitors of intestinal cle-glucosidase enzymes regulate the rate of 

digestion of complex carbohydrates and disaccharides [13, 14]. The distal jejunum and ileum thereafter 

experience reduced or insufficient absorption of monosaccharides and decreased digestion of carbohydrates 

compared to the proximal jejunum (Table 1). Consequently, there is a reduction in or a delay in the increase in 

postprandial plasma glucose levels. In response to a rise in plasma glucose levels, -glucosidase inhibitors 

provide the pancreatic cell more time to boost insulin secretion [15, 16]. -glucosidase inhibitors should be taken 

at the start of main meals due to their mode of action. Importantly, the quantity of complex carbs in the meal 

will dictate how well it lowers postprandial glycemia [16]. . Crucially, it has certain negative impacts. The most 

frequent ones are diarrhea, gas, and stomach pain brought on by changes in the colon's bacterial metabolism of 

disaccharides [17, 18]. Other drawbacks include a possible increase in liver hepatic enzymes and a minimal 

impact on cholesterol. Acarbose [19], miglitol [20, 21], and voglibose [17, 22] are the three -glucosidase 

inhibitors currently on the market that are utilized as antidiabetic medications. Acarbose is generally accessible, 

but voglibose is exclusively available in Japan, and miglitol was approved by the Food and Drug 

Administration. Acarbose is generally accessible, but voglibose is exclusively available in Japan, and miglitol 

was approved by the Food and Drug Administration. The most commonly prescribed -glucosidase inhibitor is 

acarbose, which was the first to be described [23] [24]. Actinoplanes utahensis is the microbiological source of 

this pseudotetrasaccharide [25]. comprising a nitrogen bond between the first and second glucose units and a 
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maltose molecule connected to acarvosine [13, 14, 21]. The stability and high affinity of this natural 

tetrasaccharide for the active centers of -glucosidases of the small intestine brush border make it significant [26]. 

Acarbose is less effective against sucrase, maltase, and dextrinase and more effective against glucoseamylase 

[26]. Additionally, it inhibits -amylase, while glucosesidases are unaffected [14]. Since intestinal bacteria and 

amylases found in the small intestine mostly break down acarbose, absorption of this sugar is minimal [21, 27]. 

Three times a day, before the main meals, 50 mg is the suggested dosage, which can be increased up to 100 mg 

three times daily [14]. The structure of miglitol, the first pseudomonosaccharide-glucosidase inhibitor made from 

1-deoxynojirimycin, is strikingly similar to that of glucose [28]. 

 

 In contrast to acarbose, it has poor tissue penetration, is nearly entirely absorbed in the upper portion 

of the small intestine, and is eliminated unaltered by the kidneys [29]. It mostly inhibits sucrase, but it also 

inhibits lactase, glucoamylase, isomaltase, and trehalase [30]. The maximum recommended daily dosage of 

miglitol is 100 mg, which can be used three times daily after a few weeks, however the average amount is 50 mg 

[14, 21]. 

 

 

 

 

 

 

 

Fig.1 Mechanism of action of insulin. 

 

The Biguanides 

Due to the discovery that Galega officinalis, a traditional herb that has long been used as a therapy for 

diabetes mellitus, was rich in guanidine, a number of glucose-lowering guanidine derivatives were introduced in 

the 1920s [31]. As insulin became widely accessible and utilized, these substances were all but forgotten [32]. 

The use of biguanides to treat diabetes mellitus was not reexamined until the 1950s. Three biguanides with 

antidiabetic properties were identified in the late 1950s: metformin [34], buformin [32], and phenformin [33]. 

Due to a high frequency of lactic acidosis, many nations have stopped using phenformin and buformin [35], 

leaving metformin as the most commonly used biguanide globally [32, 36]. However, it is recognized that in 

2015,  Vol.  21,  No.  25,  3608  Current  Pharmaceutical  Design According to Meneses et al., 

insulin production in pancreatic cells is not stimulated by formin [32]. Recent research has shown that 

metformin inhibits complex I of the electron transport chain [43, 44], which activates signaling that is sensitive 

to AMP- activated protein kinase (AMPK) [40]. By phosphorylating several important proteins, AMPK regulates 

the metabolism of fats and carbohydrates as well as the energy of cells [45]. Numerous biological changes are 

brought about by the increase in its activity, such as the stimulation of muscle glucose uptake, fatty acid 

oxidation in the liver and muscle, suppression of hepatic glucose production, cholesterol and triglyceride 

synthesis, and lipogenesis [46]. Metformin may also have the effect of raising plasma levels of GLP-1, an 

incretin hormone with antihyperglycemic qualities, and inducing the expression of the islet incretin receptor 

gene via a mechanism reliant on the peroxisome proliferator-activated receptor (PPAR) [47]. One major 

benefit of metformin over other biguanides is its extremely low likelihood of causing lactic acidosis [48]. 

However, there are certain drawbacks, like unfavorable gastrointestinal consequences [48]. Even though this 

medication is thought to be the first-line pharmacological treatment for people with type 2 diabetes, many 

patients require a second medication to achieve glycemic control [49,50]. 

 

Sulfonylureas 

Sulfonylureas were developed as medicines to promote insulin secretion in the 1940s after an 
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accidental observation of hypoglycemia episodes after sulfonamide treatment [51]. Apart from insulin 

injections, sulfonylureas were the first pharmaceutical alternative available for treating non-insulin-dependent 

diabetes mellitus by 1955 [52]. Tolbutamide, chlorpropamide, acetohexamide, and tolazamide were the first 

sulfonylureas to be created [53, 54]. The more recent second-generation medicines, gliclazide, glipizide, and 

glibenclamide (glyburide), have largely replaced these first- generation drugs [54]. Some researchers identify 

glimepiride, the most recent sulfonylurea, as a second generation of sulfonylureas [53], while others categorize it 

as a third generation [55]. Sulfonylureas close ATP-dependent potassium channels by activating -cell 

sulfonylurea receptor 1 (SUR 1), which is how they carry out their secretagogue effect [56, 57] (Table 1). As a 

result, depolarization causes the potassium flow across the plasma membrane to halt, opening voltage-sensitive 

calcium channels. As a result, extracellular calcium is taken up, triggering a cytoskeletal system that leads to 

secretory granule translocation to the cell surface and insulin extrusion by exocytosis [58, 59]. When the secretory 

granule and plasma membrane fuse as a result of exocytosis, insulin is released into the extracellular space to 

reach the capillary blood flow [60, 61]. Because sulfonylurea administration might result in hypoglycemia and 

weight gain, it must be closely watched [62]and hyperinsulinemia [70]. 

 

Meglitinides 

Meglitinides, which act on ATP-dependent potassium channels, are insulin secretagogues that function 

similarly to sulfonylureas [50] . As a result, they have no effect on patients who have already had sulfonylurea 

treatment at the maximum therapeutic dosage [63]. In light of this, they provide an alternative to sulfonylurea 

therapy, but they come with nearly identical drawbacks and a more intricate dosage schedule [48]. Three 

meglitinides—nateglinide [64], repaglinide [65], and mitiglinide[66]—have been employed in clinical practice 

thus far.The first meglitinide counterpart to be made accessible for clinical usage was repaglinide, a derivative of 

carbamoylmethyl benzoic acid [67]. By blocking ATP-dependent potassium channels in the pancreatic cell 

membrane, it increases insulin release; however, it has no effect when extracellular calcium is not present [68]. 

Repaglinide produces a faster reaction. [70] but binds to a neighboring area of the receptor site for sulfonylureas 

medicines [69]. However, repaglinide's glucose-lowering action lasts for a shorter period of time than some 

sulfonylureas. As a result, there is a decreased chance of hypoglycemia [71]. The maximum daily dosage of 

repaglinide is 16 mg, and it should be taken at least twice daily before each meal [72]. Repaglinide has a 

bioavailability of roughly 63% [74] and is quickly absorbed [73] after oral treatment. It is primarily eliminated 

into the feces through the bile and is broken down in the liver [75] to inactive metabolites, making it a good 

choice for patients suffering from renal failure [73,76]. However, as the pharmacokinetics of this medication 

may be considerably altered in individuals with liver illness, care should be taken [77]. When other medications 

are administered, protein binding may be decreased. It can be taken with thiazolidinediones [78] or metformin 

[65], although people taking more than one medication need to be closely watched [50]. 
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Fig.2 Mechanism of Action  of Meglitinides 
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DPP-4 Inhibitors and GLP-1 Receptor Agonists 

In contrast to another incretin, glucose-dependent insulinotropic polypeptide (GIP), it was suggested in 

the early 1990s that the incretin hormone GLP-1 might be a viable target in the treatment of type 2 diabetes 

because of its antihyperglycemic qualities [79]. Following the consumption of a meal, particularly one high in 

lipids and carbohydrates, GLP-1 is released by endocrine L-cells [80] in the small intestine [81]. After being 

released, GLP-1 interacts with its receptor in the pancreas, brain, heart, lung, stomach, intestine, and kidney to 

directly affect a number of organs [82]. This contact causes adenylate cyclase to be activated and cAMP to be 

produced on pancreatic cells, which mediates its stimulatory effect on insulin secretion A via protein kinase [83]. . 

However, GLP-1 also directly inhibits ATP-dependent potassium channels, among other mechanisms, to 

increase insulin production. As sulfonylureas, this causes intracellular calcium levels to rise and mitochondrial 

ATP generation to increase, both of which further depolarize the membrane. Lastly, it results in the exocytosis of 

insulin granules from pancreatic cells [84]. GLP-1 has been previously demonstrated to induce satiety [86] and 

inhibit stomach emptying [85] . Additionally, by promoting neogenesis and proliferation and inhibiting 

apoptosis, it may potentially increase cell bulk. Consequently, GLP-1 has a number of effects that may be useful 

in the management of type 2 diabetes. Nevertheless, the enzyme dipeptidyl peptidase-4 (DPP-4) quickly breaks 

down and inactivates GLP-1 [87]. When GLP-1's two N-terminal amino acids are broken down by DPP-4, the 

resulting metabolite loses GLP-1's glucagonostatic and insulinotropic properties. As a result, two therapeutic 

approaches have been developed to capitalize on the positive effects of GLP-1: the development of DPP-4 

inhibitors, which stop GLP-1 from being inactivated [89,90], and the use of GLP-1 receptor agonists,  which  

are  more  resistant  to  the  action  of  DPP-4  [88]. Up to 90% of DPP-4's activity is inhibited 

during a 24-hour period by DPP-4 inhibitors, which competitively and reversibly block DPP-4 [91]. DPP-4 

inhibitors therefore increase insulin secretion and decrease glucagon release [92], both of which are reliant on 

glucose. In mouse models of type 2 diabetes, DPP-4 inhibition also results in an increase in cell mass [93,94. 

Research on animals and in vitro has shown that GLP-1 further boosts cell mass by promoting islet cell 

neogenesis and preventing islet apoptosis [95, 96][97, 98]. 

 

Thiazolidinediones 

Initially created as antioxidants in the early 1980s, thiazolidinediones, often known as glitazones, are a 

class of oral antidiabetic medications [99]. After the manufacture of ciglitazone, the first thiazolidinedione, this 

class of medications was shown to have the ability to reduce blood glucose. In mice with hereditary insulin 

resistance, this effect was very noticeable [100]. As biguanides, thiazolidinediones were thought to cause insulin 

sensitization [101]. This was determined after it was noted that insulin-deficient animals were unaffected and that 

glycemia improved without rising insulin levels. However, clinical trials on ciglitazone and englitazone were 

never conducted because of their liver toxicity [102]. The first thiazolidinedione to be sold, troglita zone, was 

first made available in the USA and Japan in 1997 but was later taken off the market because of a hepatotoxic 

adverse effect [103]. Rosiglitazone and pioglitazone are the two thiazolidinediones that are currently approved 

for clinical use. The way these medications work, their adverse effects, and their impact on hyperglycemia are 

all rather similar. It's interesting to note that both can be purchased in combination with other antidiabetic 

medications like glimepiride or metformin [104]. Crucially, fluid retention is a side effect of this class, which 

means that patients with heart failure one of the main causes of death for people with type 2 diabetes—should 

not use thiazolidinedione. Furthermore, in contrast to the other pharmacological treatments that are currently 

available, the therapeutic effect has a delayed onset of action and is only noticeable after 3 to 4 months of 

medication . Strong synthetic activators of the nuclear receptor peroxisome proliferator-activated receptor 

(PPAR) include thiazolidinediones [105]. In addition to being found in muscle, liver, endothelium, and 

pancreatic cells, PPAR is highly expressed in important target tissues for insulin action, such as adipose tissue 

[106]. It alters the transcription of genes involved in the metabolism of glucose and lipids by heterodimerizing 

with the retinoid X receptor and attaching to nuclear response elements [107]. Interestingly, this stimulation 

encourages pre-adipocyte development, which amplifies the local effects of insulin. It is also mentioned that the 

enhancement in skeletal glucose disposal brought on by thiazolidinediones may be mediated by signals 

originating from the adipose tissue, such as adiponectin or leptin [108]. Pioglitazone, a strong PPAR agonist 

[109], improves insulin sensitivity in hepatic and adipose tissue [110] and insulin-stimulated glucose absorption 

in peripheral tissues. Additionally, it results in a mild activation of PPAR, which has been linked to both a 

reduction in plasma triglyceride levels and anti- inflammatory actions [111]. The presence of food on the 

gastrointestinal track does not alter pioglitazone's oral bioavailability, which is roughly 83% [112]. Additionally, 

it is quickly absorbed and undergoes extensive hepatic hydroxylation and oxidation, producing both active and 

inactive metabolites [113,114]. The effect of reducing blood glucose develops gradually over several weeks in a 

dose-dependent . The recommended starting dose for pioglitazone is 15 mg once daily, with a daily maximum of 

45 mg [104]. It is disputed whether pioglitazone may increase the incidence of bladder cancer by an unidentified 

mechanism, despite the fact that it has not been shown to cause hepatotoxicity [116]. Instead of a pharmacologic 

action via PPAR, some evidence points to an effect linked to crystal formation and bladder irritation 
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[109]. There is some debate, though, as other research suggested pioglitazone shouldn't be linked to a higher risk 

of bladder cancer [117]. Notably, pioglitazone has been shown to have several positive effects on 

immunological function, lipid metabolism, and endothelial function [118–119]. Although it is a member of the 

thiazolidinediones class, rosiglitazone differs from troglitazone and pioglitazone in its side chain [120]. It is 

widely metabolized in the liver and has an oral bioavailability of 99% [121]. Rosiglitazone is therefore not 

recommended for individuals who have liver problems. Rosiglitazone is primarily excreted in the urine and 

feces [121]. In conjunction with diet and exercise, rosiglitazone should be administered once or twice daily at a 

beginning dosage of 4 mg/day, which may be increased, if necessary, to 8 mg/day in order to obtain a 

considerable antihyperglycemic efficacy [122]. Interestingly, pioglitazone, rather than rosiglitazone, seems to be 

directly linked to the risk of bladder cancer [123]. 

 

 

 
 

Fig.3  Mechanism of action Thiazolidinediones  

 

Inhibitors of Sodium-Dependent Glucose Co-Transporter 2 (SGLT2) 

Sugars and sodium are transported across the plasma membrane of cells from a wide range of tissues 

by sodium-dependent glucose co-transporters (SGLTs), a broad class of proteins [125]. More precisely, the 

kidney's reabsorption of glucose is mediated by two members of the SGLT family. Nearly 90% of the active renal 

glucose reabsorption is carried out by the high-capacity, low-affinity transporter SGLT2, with the remaining 10% 

being reabsorption by SGLT1 [126]. SGLTs facilitate the proximal tubules' reabsorption of glucose, which is 

subsequently passively diffused into the circulation by glucose transporters (GLUTs). Unlike SGLT1, which is 

also present in the gastrointestinal tract, SGLT2 is nearly exclusively expressed in renal proximal tubules, and as 

a result, it is unlikely that its suppression will have an impact on other organs [127]. Therefore, SGLT2 

inhibition promotes urine output of glucose and lowers plasma  glucose  levels  by  limiting  renal  

glucose  reabsorption  . Because SGLT2 inhibitors do not impede insulin production, they employ a unique 

method of action [128]. Clarifying the mechanism of renal glucose reabsorption has been made possible in large 

part by phorizin. Through nonselective inhibition, it is a strong inhibitor of both SGLT1 and SGLT2 [129]. 

Subsequent research, however, has demonstrated that its limited intestinal absorption and resulting low 

bioavailability exclude its usage as an antidiabetic treatment [129].Additionally, phlorizin is hydrolyzed and 

degraded by -glucosidase in the gut, resulting in phloretin [126].  
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Table : 1  Antidiabetic Drugs and Typical Doses [132] 

 

Sr. No.Drug Class Drug Name Dose Notes 

1 Biguanides Metformin 500-100 mg 1-2 

times/day (max:2000- 

2500mg/d ay) 

Start low to 

reduce GI Side effects 

2 Sulfonylureas Glimepride 1-4 mg once daily (max:8mg

/day) 

Risk of 

hypoglyc emia 

  Gliclazide 40-80mg 1-2 

time day or MR 30- 

120 mg once daily 

Modified 

release available 

  Glibenclami 

de 

2.5-10mg once 

or twice daily 

Avoid in elderly 

due to hypoglyc emia risk 

3 DPP-4 

Inhibitor s 

Sitagliptin 100mg once daily Adjust for renal 

impairme nt 

  Vildagliptin 50mg twice 

daily 

Monitor liver 

enzymes 

  Linagliptin 5mg once daily No dose 

adjustme nt in renal imapairm 

ent 

4 SGLT2 

Inhibitor 

Dapagliflozi n 10mg once daily Caution in renal 

impairme nt 

  Empaglifloz 

in 

10-25mg once 

daily 

Also reduce cv 

risk 

  Canagliflozi 

n 

100-300 mg 

once daily 

Risk of genital 

infection 

5 Thiazolidinedi

Ones 

Pioglitazone 15-45 mg once daily Risk of weight gain 

,edema 
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6GLP-1 

Receptor 

Agonist 

Liraglutide 0.6 mg Sc daily 

increase to 1.2-1.8 

mg/day 

Weight loss 

  Dulaglutide 0.75-1.5 mg sc 

once weekly 

Long- Acting 

7Insulin Rapid  - acting (e.g Lispr o, 

Aspar 

t 

Usually 4-6 

units before meals , individual ized 

Based on

 carb 

intake 

  Basal  (e.g Glarg ine, Dete 

mir) 

Start  10 units 

daily 

Titrate based on 

FBS 

 

CONCLUSION 
 

A metabolic condition known as diabetes mellitus causes an increase in blood sugar levels. Patients 

with DM are most likely to have type-2 diabetes. Diabetes mellitus develops throughout pregnancy. Major 

organs such as the heart, blood vessels, nerves, eyes, and kidneys may be impacted. Alzheimer's disease appears 

to be more likely to occur in people with type 2 diabetes. The most popular tests for diagnosing diabetes 

mellitus are the hemoglobin A1c (glycohemoglobin), random blood glucose test, oral glucose tolerance test 

(OGTT), and fasting plasma glucose (FPG) test. Ultimately, there is no treatment for diabetes mellitus; 

nevertheless, patients can benefit from insulin, regular blood sugar checks, a good diet, regular exercise, and 

keeping a healthy weight, as well as from counting their protein, fat, and carbohydrate intake. 
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